

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

SIMULATING CLOUDS WITH PROCEDURAL
TEXTURING TECHNIQUES USING THE GPU

by

Georgios E. Tarantilis

September 2004

 Thesis Advisor: Rudy Darken
 Co-Advisor: Joe Sullivan
 Second Reader: Erik Johnson

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2004

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Simulating Clouds with Procedural Texturing
Techniques Using the GPU
6. AUTHOR(S) Georgios E. Tarantilis

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Many 3D training simulations employ static, and to some extent, simplistic natural phenomena representation that

often leaves much to be desired. Taking advantage of the latest advancements in computer graphics hardware allows modeling
dynamic natural phenomena such as clouds. Specifically, utilizing procedural techniques and high-level shading languages, it is
possible to produce considerably more realistic simulations. This thesis designed and implemented a visual simulation
component, which renders convincing clouds using procedural noise-based texture mapping techniques. Both traditional
rendering and shader-enabled rendering supported by the OpenGL Shading Language are utilized. This component has been
included in the Delta3d simulation engine and is used to create convincing clouds in outdoor simulations while the performance
penalty imposed is considered acceptable. Custom tools have been developed for easy noise texture parameterization and cross-
platform compatibility has been demonstrated.

15. NUMBER OF
PAGES

69

14. SUBJECT TERMS 3D Training Simulations, Clouds, Convincing Clouds, Rendering, Shader-
Enable Rendering, OpenGL Shading Language, Delta3d Simulation Engine, Texture
Parameterization, Cross-Platform Compatibility

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

Approved for public release; distribution is unlimited

SIMULATING CLOUDS WITH PROCEDURAL TEXTURING TECHNIQUES
USING THE GPU

Georgios E. Tarantilis
Lieutenant, Hellenic Navy

B.S., Hellenic Naval Academy, 1993

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MODELING VIRTUAL ENVIRONMENTS AND
SIMULATIONS (MOVES)

from the

NAVAL POSTGRADUATE SCHOOL
September 2004

Author: Georgios E. Tarantilis

Approved by: Rudy Darken

Thesis Advisor

Joe Sullivan
Thesis Co-Advisor

Erik Johnson
Second Reader

Rudy Darken
Chairman, MOVES Academic Committee

 iii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

Many 3D training simulations employ static, and to some extent, simplistic

natural phenomena representation that often leaves much to be desired. Taking advantage

of the latest advancements in computer graphics hardware allows modeling dynamic

natural phenomena such as clouds. Specifically, utilizing procedural techniques and high-

level shading languages, it is possible to produce considerably more realistic simulations.

This thesis designed and implemented a visual simulation component, which renders

convincing clouds using procedural noise-based texture mapping techniques. Both

traditional rendering and shader-enabled rendering supported by the OpenGL Shading

Language are utilized. This component has been included in the Delta3d simulation

engine and is used to create convincing clouds in outdoor simulations while the

performance penalty imposed is considered acceptable. Custom tools have been

developed for easy noise texture parameterization and cross-platform compatibility has

been demonstrated.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PROBLEM STATEMENT ...1
B. RESEARCH QUESTIONS...2

II. BACKGROUND ..3
A. GRAPHICS HARDWARE ...3

1. Evolution...3
2. Programmable Hardware ...3
3. Future Trends...4

B. HIGH-LEVEL SHADING LANGUAGES..4
C. PROCEDURAL TEXTURING ..5

1. Introduction..5
2. Noise ..6
3. Solid Noise Textures ..7
4. Natural Phenomena ...7

D. SCENE GRAPHS...8
1. Introduction..8
2. OpenSceneGraph ...8

III. CLOUD SIMULATION DESIGN..11
A. INTRODUCTION..11

1. Purpose..11
2. Overview ...11
3. Tools ..12

B. DESIGN DESCRIPTION ...12
1. Overview ...12
2. NoiseGenerator Class ..13
3. CloudPlane Class ...16

a. Overview ..16
b. Noise Texture ..17
c. Update..19

4. CloudDome Class ...19
a. Overview ..19
b. Dome..20
c. Noise Texture ..21
d. Shaders ..21
e. Update..26

C. SUPPLEMENTARY RESEARCH ..27
1. Post-Process of Noise Textures ...27
2. DDS File Format ..29
3. “Make Some Noise” Tool ..31
4. Shader Development..33

 vii

IV. CLOUD SIMULATION IMPLEMENTATION...37
A. DELTA3D INTEGRATIONS...37

1. CloudPlane..37
2. CloudDome ...41
3. FLTK GUI ..45
4. Performance ...46

B. LINUX PORT...47

V. CONCLUSIONS – FUTURE WORK..49
A. SUMMARY ..49
B. FUTURE WORK...49

1. Clouds..49
2. Other Natural Phenomena..50

APPENDIX GLOSSARY..51

BIBLIOGRAPHY..53

INITIAL DISTRIBUTION LIST ...55

 viii

LIST OF FIGURES

Figure 1. 1D Noise Functions..6
Figure 2. Scene Graph Structure ...8
Figure 3. Class Hierarchy..12
Figure 4. Samples of 2D and 3D Noise Textures..14
Figure 5. Tiled Pattern...14
Figure 6. 3D Texture Structure..16
Figure 7. Tessellated CloudPlane Quad ..18
Figure 8. CloudPlanes with Hard Edges and Soft, ALPHA Enabled, Edges..................18
Figure 9. Cloud Dome...20
Figure 10. Execution Model for OpenGL Shaders (From: OpenGL Shading Language

Book)..22
Figure 11. The Cloud Vertex Shader Source File ...23
Figure 12. The Cloud Fragment Shader Source File...25
Figure 13. Fragment Color Computation ..26
Figure 14. Noise Clamping and Exponentiation Equation..28
Figure 15. Exponentiation Effects on Noise Texture ..29
Figure 16. Structure of the DDS Image File Format...30
Figure 17. Noise Texture Creation Process...31
Figure 18. “Make Some Noise” Tool Ported to Mac OSX ...32
Figure 19. “Make Some Noise” Tool Ported to Linux (Fedora)33
Figure 20. ATI’s RenderMonkey IDE ..35
Figure 21. Overcast Sky ..39
Figure 22. Broken Clouds ...39
Figure 23. Few Clouds ..40
Figure 24. Combined 2nd and 3rd Layers ...40
Figure 25. Clouds with CloudPlanes at Dusk..41
Figure 26. CloudDome Screenshot 1 ..43
Figure 27. CloudDome Screenshot 2 ..44
Figure 28. CloudDome Screenshot 3 ..44
Figure 29. FLTK GUI Applet for CloudDome ...45
Figure 30. Cutoff Equal to 0.85 and 0.78..46
Figure 31. Cutoff Equal to 0.72 and 0.61..46

 ix

THIS PAGE INTENTIONALLY LEFT BLANK

 x

LIST OF TABLES

Table 1. Application FPS Changes with the Addition of Clouds47

 xi

THIS PAGE INTENTIONALLY LEFT BLANK

 xii

I. INTRODUCTION

A. PROBLEM STATEMENT
The technological achievements in the computer hardware field during recent

years have been astounding. Visual simulations are taking advantage of new features and

capabilities of graphics hardware, thus taking the degree of realism and visual fidelity to

higher levels. One of the fields still experiencing major research is the simulation of

natural phenomena. These are essential in presenting outdoor scenes where the user or

trainee must be fully immersed in the environment. Additionally, many training

applications must provide the trainee with cues such as wind direction and shadows in

order to prevent negative transfer of training. Albeit, nature is unpredictable and does not

follow a definite set of rules that can be modeled easily with computer algorithms and

logic. That being the case, developing a precise visual model of a single natural

phenomenon is feasible under a large number of assumptions, but generally, the

computation and rendering process will consume so many CPU (or GPU) cycles that it

cannot be executed at interactive rates.

For this reason, many visual simulations of outdoor scenes use procedural

texturing techniques to catch the irregularities and randomness found in nature.

Requirements for creating textures programmatically are parameterization and the

property of being repeatable without any noticeable seams when these textures are tiled.

These procedural generated textures can be used by either traditional rendering

applications or applications using the new programmable features of graphics hardware.

The research areas of this thesis are

• The creation of procedural 2D and 3D noise-based textures

• Cloud visual simulation through the use of regular texture mapping
technique and a GPU shader-enabled updateable texture technique

• Integrating this cloud simulation into an open source 3D visual simulation
and game engine

 1

B. RESEARCH QUESTIONS

Clouds are an important element of the visual simulation of any outdoor scene

and their inclusion augments the realism and visual appeal of the simulation. Clouds are

rarely examined closely in life. They are just part of the environment and expected to be

there. The goal is to integrate convincing procedural clouds in an outdoor simulation.

The research questions that need to be answered are the following:

• How can noise-based procedural textures be created? Which pixel format
will be used? In which file format will it be stored?

• How can cloud-like textures be created out of plain noise-based textures?

• How it is possible for the process to be parameterized in order to easily
create many different textures?

• Is there a minimum requirement for graphics cards in order to support the
shader-enabled technique?

• Which shading language should be used to implement the shaders?

• What are the restrictions in the simulation?

• How is it to be integrated with Delta3D simulation engine?

• Is it possible for the simulation to be executed in many platforms?

• What is the performance penalty introduced? Is the framerate drop
significant?

• When is it appropriate to use this simulation?

 2

II. BACKGROUND

A. GRAPHICS HARDWARE

1. Evolution
Computer graphics hardware has evolved dramatically during the past five years.

It has advanced from the graphics accelerators of PCs and workstations, which simply

were giving a performance boost, to the Graphics Processor Unit (GPU), which is

capable of supporting complex, user-programmable shading programs with high

performance.

The driving forces behind this progress are undoubtedly the vast amount of

computation needed to simulate the world along with the human desire to be visually

stimulated and entertained. Aided by the semiconductor industry, which has committed

itself to doubling the number of transistors that fit on a microchip every 18 months

(Moore’s Law), GPUs have been highly specialized and not only has performance

increased greatly, but the quality of computation and the flexibility of graphics

programming have also steadily improved.

2. Programmable Hardware
Until recently, the limited functionality of the fixed graphics pipeline restricted

developers in what they could create in real-time. This generally resulted in synthetic-

looking real-time graphics. However, the world is comprised of very complex materials

and lighting effects, so real-time graphics hardware had to support shading models other

than the fixed pipeline provided. This was possible by making certain stages in the

sequence of the pipeline programmable and by providing support from the two graphics

rendering APIs, DirectX and OpenGL, which exposed these new hardware capabilities to

the end-user. The developer now can program the vertex and fragment processor within

the GPU bypassing the fixed pipeline and create realistic graphics using consumer video

cards. For visual simulation applications specifically, real-time programmable shading

enables superior visual realism.

 3

3. Future Trends

The latest graphics cards augment the programmability of the hardware adding

features such as the ability to read texture memory in vertex programs and branching in

fragment programs. Future graphics cards will likely further expand hardware

programming capabilities along with increased performance and flexibility. Support for

algorithms such as noise evaluation functions and global illumination have been

announced for the graphics hardware.

Additionally, NVIDIA has announced (July 2004) its SLI (Scalable Link

Interface) multi-GPU architecture. This technology promises to take advantage of the

increased bandwidth of the PCI Express bus architecture and allow multiple GPUs to

work efficiently in parallel in a single system.

B. HIGH-LEVEL SHADING LANGUAGES
The first high-level shading language to become the industry standard for offline

rendering systems was PIXAR’s RenderMan Shading Language in 1988. Such languages

are using the CPU for rendering and are non-interactive but they greatly influence the

invention of real-time high-level shading languages.

Most graphics hardware and APIs support programming the GPU with low-level

programming interfaces, usually at the assembly language level. Unfortunately, it is

rather difficult and often unproductive to program in assembly language. Thus, it was

necessary to create high-level shading languages. These high-level languages would offer

advantages such as hardware abstraction and faster compiler-optimized output code.

Real-time high-level shading languages have leveraged the accumulated

knowledge and shader techniques of offline languages and further provided true

interactivity (change of viewpoint) and performance. Also, they have potentially better

performance than assembly programming because shaders are optimized by the compiler.

Currently, there are three main rivals in the field of shading languages:

• NVIDIA's Cg

• Microsoft's HLSL

• OpenGL Shading Language (GLSL)

 4

Cg and HLSL have essentially the same syntax and capabilities because NVIDIA

and Microsoft collaborated in their creation. The main goal is to compare these two with

GLSL and decide which will have greater developer acceptance, performance and

integration in applications and graphics APIs. This was a turning point for this thesis

because these languages evolve radically and it is difficult to predict their future.

A key difference between GLSL and the other languages is that GLSL is part of

the OpenGL 1.5 API specification and does not need any other translation between the

application, the shader source code and the API calls. Of course, if one uses the other

competing API (DirectX), this is not a problem. In general, all high-level languages

compile or translate C-like source to machine code to be executed in the appropriate API.

C. PROCEDURAL TEXTURING

1. Introduction
There have been two recent important developments for real-time procedural

texturing techniques: increased CPU power and programmable graphics hardware

(GPUs), which are available on commodity PCs. This has allowed graphics developers to

create interactive complex procedural effects.

One of the most important features of procedural texturing is abstraction. In a

procedural approach, rather than explicitly specifying the texture that will be applied to

the scene models, they are abstracted into a function or an algorithm (i.e., a procedure)

and evaluate this procedure when needed. Other advantages of procedural texturing are:

• Parametric control makes it possible to create variations of the same
theme easily

• Variable resolution offers “infinite” detail, limited only by precision

• Procedural textures can cover arbitrarily large areas, with no repeating

• Solid texturing – not limited by texture mapping coordinates because
evaluated textures adapt to arbitrary geometry

• It is only code - it requires minimal memory storage compared to textures

The most significant drawback of procedural texturing, at least currently, is that it

requires many computation cycles, so that it is difficult to compute textures, especially

 5

large 3D textures, in the GPU at interactive rates. Therefore, the textures are usually

precomputed on the CPU and passed onto the GPU. Hopefully, this disadvantage will

vanish when newer and faster GPUs are developed.

One other difficulty presented to the developer of procedural textures is that this

is a highly iterative process, and writing and debugging such code is not always intuitive.

Given too little parameterization, it is not possible to create what was envisioned. Given

too much, and it is possible to become mired in thousands of iterations.

2. Noise
What makes natural phenomena and objects unique in their appearance is their

apparent randomness. Various noise functions are used to simulate that and other

phenomena in procedural texturing. They replace or modulate repeating textures with

procedural ones adding controlled randomness to them. The first implementation of a

noise function for procedural texturing was done by Ken Perlin [3], for which he also

received an Academy award. Since then, this function has provided inspiration, and

numerous variations of value, lattice, gradient, and fractals have been presented. Figure 1

presents two examples of 1D noise functions. Noise functions have been widely used in

the film industry, commercials, and computer graphics for many years.

Figure 1. 1D Noise Functions

 6

The ideal noise function characteristics are:

• Repeatable pseudorandom values

• Specific range (typically [-1,1] or [0,1])

• No repeating patterns

• Invariance under rotation and translation

3. Solid Noise Textures
Building a 3D noise texture, also called solid texture or volume texture, requires

generating the 2D texture slices that will be stacked together. OpenGL 1.3 and later

drivers, natively support 3D textures, while other earlier drivers optionally support them

through extensions. To ensure 3D texture will be continuous in space these 2D textures

slices must be tileable in both the x and y axes.

Another issue is that 3D textures quickly become very large with increased

resolution. In other words, a 128x128x128 RGBA texture occupies 1283x4 bytes = 8Mb

of memory, which eventually will be loaded into the graphics card. A 256x256x256

RGBA texture occupies 256 Mb, which most current cards simply do not have.

Thus, it is necessary to select a smaller resolution, and at the same time, take steps

to ensure that the visual appeal of the texture is acceptable. Filtering (tri-linear, cubic

filtering), texture compression and noise function optimizations are some tools that exist

for this function, undoubtedly with some trade-offs, as far as performance is concerned.

4. Natural Phenomena
Procedural texturing can mimic statistical properties of natural textures and can be

used in many applications for the simulation of natural phenomena and effects such as

clouds, gases, smoke, water, and terrain. Many of these simulations follow purely

empirical approaches that make everything look convincing, but have nothing to do with

physics and material properties. The world is far too computationally complex to model

every aspect with fine detail. Nevertheless, there have been some physical-based

simulations ([2][10]), which use simplified mathematical models that are both

computationally tractable and aesthetically pleasing.

 7

D. SCENE GRAPHS

1. Introduction
A scene graph is a hierarchically arranged data structure that encapsulates and

describes the 3D world of a simulation: 3D models, lights, cameras, and actions. It is a

directional, acyclic graph (DAG) or more commonly, a tree. Its structure determines the

order of operation of its data and different node types provide mechanisms for grouping,

animation, level of detail, and other concepts that are applied when the scene graph is

traversed.

Figure 2. Scene Graph Structure

A primary role of a scene graph is to improve performance through culling, state

sorting and various other methods, which reduce the load on the graphics rendering

engine, allowing complex scenes to be rendered faster.

2. OpenSceneGraph
OpenSceneGraph (OSG) is a multi-platform open source graphics toolkit for the

development of graphics applications such as flight simulators, games, virtual

environments or scientific visualization. Written entirely in Standard C++ and OpenGL,

it makes use of the Standard Template Library (STL) and Design Patterns, and leverages

the open source development model to provide a library that keeps pace with the graphics

hardware evolution.

The Delta3D simulation engine being developed in the MOVES Institute of the

Naval Postgraduate School has chosen OSG as the framework upon which to be built and

extend its functionality. Delta3D’s goal is to be used for simulations, military training

 8

applications, games, or other graphical applications. It provides a high-level API while

still allowing the end-user optional, low-level functionality. Additionally, it is based

completely on open source software so it is both flexible and expandable in response to

future needs.

 9

THIS PAGE INTENTIONALLY LEFT BLANK

 10

III. CLOUD SIMULATION DESIGN

A. INTRODUCTION

1. Purpose
The purpose of this thesis was to research real-time natural phenomena

simulation, more specifically cloud simulation, in virtual environments applications, and

possible uses of GPU programming techniques. The developed libraries were included in

the simulation engine Delta3D (former P51), an ongoing project currently sponsored by

N6M (U.S. Navy Modeling and Simulation Management Office).

2. Overview
The initial thought was to divide the research for cloud simulation into three

topics using both traditional rendering techniques through the fixed pipeline and

programmable graphics hardware:

• Traditional textured-mapped cloud planes (rectangles) with run-time
procedural static textures above the 3d world

• Dome-shaped (hemispherical structure) cloud surface around the 3d world
rendered with direct manipulation of a run-time or pre-computed
procedural volume texture in the GPU. Texture is updateable through
vertex and fragment shaders

• Volumetric clouds using techniques of implicit surface modeling [2] and
volume rendering with programmable graphics hardware

The first two approaches have been designed, tested and developed. The third

approach, after conducting some preliminary research on the methods of implicit

modeling (blobs, isosurfaces) and volumetric rendering with shaders, was considered

unfeasible to be attacked in the timeframe required. Nevertheless, this method should be

used in visual simulations when the viewpoint is not consistently near ground level, as

with a flight simulator.

The three main classes from this research, NoiseGenerator, CloudPlane and

CloudDome, have been developed as a part of a Delta3D simulation engine, but with

minor changes, they can be used from whichever application or simulation uses the

OpenSceneGraph framework.

 11

3. Tools

Standard C++ language and Microsoft Visual Studio .NET 2003 as the IDE were

used to develop the libraries. The API of choice was OpenGL 1.5, and the graphics

library used was OpenSceneGraph. The OpenGL Shading Language and ATI’s shader

IDE RenderMonkey 1.5 (with GLSL support) was used as a shading language to develop,

preview and tweak the shaders. Additional tools were Microsoft’s DirectX Texture Tool

(part of DirectX 9.0b SDK) for viewing and manipulating 2D and volume DDS files,

Adobe’s Photoshop for image editing, NVIDIA’s DDS plugin for Photoshop,

the custom-made tool “Make Some Noise” to augment the process of noise texture

generation, and Troll Tech’s Qt.

B. DESIGN DESCRIPTION

1. Overview
The presentation of the whole hierarchical structure of the Delta3D simulation

engine is beyond the scope of this thesis, but the classes relevant to this research must be

discussed. The three pertinent classes are the EnvEffect class, the Environment class and

the Weather class. EnvEffect is a base class for any environmental effect class, so

CloudPlane and CloudDome classes inherit from it (Figure 3).

Figure 3. Class Hierarchy

 12

Environment maintains a list of effects and any new effect must be registered to

this list in order to be rendered. Multiple instances of CloudPlane can be added to the

Environment to represent layers of clouds, although only one instance of CloudDome can

exist at a time. Normally, the two classes are used interchangeably but not both at the

same time. Developers can embody the required functionality by using either of the two

for rendering clouds depending on each application’s needs.

The Environment class provides a mechanism for the registered environmental

effects to be updated at runtime by passing variables such as skyColor, fogColor, and

sunAngle in the Repaint. This update happens every second but if an EnvEffect needs to

be updated for every frame, it is possible to register the System class as a Message Sender

and obtain the deltaFrameTime, which is the time passed from frame to frame.

2. NoiseGenerator Class
The NoiseGenerator class is used to create procedural 2D and 3D gradient lattice

noise textures for use by the other two classes CloudPlane and CloudDome. The

algorithm of the noise function is based on Ken Perlin's improved Noise [3]. This

improved algorithm reduced the grid-oriented artifacts by introducing a small set of fixed

gradient directions and replaced the cubic interpolation of fade function with a fifth order

polynomial to eliminate discontinuities of second and third order derivatives. This

implementation was written in Java and had to be ported to C++.

Additional extensions added were the support for 2D noise and the extremely

important property of wrapping in every axis that produced tileable 2D and 3D noise. The

texture is created by direct manipulation of the image data segment through extensive use

of pointers. Also, the three most frequently used functions in the noise generation process

(fade, lerp and grad) were inlined to improve performance.

The user can parameterize the following inputs of the NoiseGenerator class

constructor:

• Octaves of noise

• Initial Frequency

• Initial Amplitude

 13

• Persistence

• Texture dimensions (Width, Height, Slices=Depth)

The end user, by tweaking these parameters, can create an infinite number of

noise textures. For example, Figure 4 has two sample 2D and one 3D noise textures. The

left texture of the two 2D textures has six octaves, initial frequency=6, initial

amplitude=0.7 and persistence=0.5, while the right has four octaves, initial frequency=3,

initial amplitude=1 and persistence=0.3

Figure 4. Samples of 2D and 3D Noise Textures

The resulting texture is seamless the same texture is arranged side-by-side in

every direction. For example in Figure 5 shows the middle texture tiled four times.

Figure 5. Tiled Pattern

 14

This property was achieved by passing the frequency parameter to the noise

function and apply the modulo operator (%) to the integer parts of the coordinates x, y

and z. This operator provides the remainder of the division of two numbers and has the

useful property of wrapping when applied in a sequence of numbers. For example,

assume the frequency is 5. When the modulo operator is applied to a series of integer

numbers and the frequency, it will yield:

1%5 0.2 , 2%5 0.4 , 3%5 0.6 , 4%5 0.8 , 5%5 0 , 6%5 0.2= = = = = =

The random numbers that initialize the permutation array are created with the

reseed function, which uses rand and as seed, the machine time to avoid any similarities

in subsequent calls.

The available pixel formats are ALPHA, LUMINANCE, RGB or RGBA. The

most efficient formats are ALPHA and LUMINANCE because they use only one byte

per pixel. In other words, if a texture is stored in ALPHA format, it requires ¼ of

memory and storage space than the same texture stored in RGBA format. Besides, no

information is lost because the texture stored in RGBA format is grayscale. Of course,

later the texture stored in ALPHA format must be subjected to special treatment because

this channel is not normally visible.

Another solution to reduce the size of the textures, especially the volume ones,

was to use a compression technique. OpenGL 1.3 and later versions provide native

support for texture compression. The compression format is dependent on the

implementation of the driver but if the extension GL_EXT_texture_compression_s3tc is

present in the system, the S3TC_DXT formats could be used. The caveat using one of

these compression formats is that they are not lossless. After doing some experimentation

with compressed noise textures, it was concluded that the visual fidelity of the rendering

was unacceptable.

Although the produced textures appear as controlled random noise, they need to

be processed to have a cloud-like appearance. Two different techniques were used for the

 15

two cloud classes, respectively, which are described in the appropriate sections. In

general, the pixel values of the texture must be clamped to create patches of clouds and

then exponentiated to decrease the dynamic range.

Figure 6. 3D Texture Structure

One feature worth mentioning is how the 3D textures are created. OpenGL

version 1.2 and later versions support 3D textures, which essentially are a series of

regular 2D textures. The interesting characteristic of 3D textures is that when they are

applied to an object with proper texture coordinates, the graphics hardware interpolate

between the 2D texture slices. The interpolation method, which is the same with

individual 2D textures, controls the final image quality.

3. CloudPlane Class

a. Overview
The CloudPlane class is registered with the Delta3D framework by

inheriting from the EnvEffect class. It is used to create layers of clouds above the 3d

world of the simulation. This is achieved by creating pseudo-infinite planes (quads with

very large dimensions), which are properly tessellated and textured to give the impression

of clouds. These planes must be “fixed” above the viewer, which is achieved by inserting

their nodes as children of a transform node (MoveEarthySkyWithEyePointTransform) that

automatically translates them to the viewer point coordinates.

 16

b. Noise Texture

The NoiseGenerator class is used to create the required 2D noise texture,

which is subsequently processed to generate the cloud-like texture. The four necessary

parameters for creating the noise texture (noise octaves, initial frequency, initial

amplitude and persistence) are passed to the NoiseGenerator class along with the

required dimensions of the texture. The dimensions should be equal in each direction and

should be a power of 2. The recommended value for width and height is 512x512 since

lower values do not produce visually acceptable results and higher values take much

more time to be computed. Further required processing of generated noise texture is

clamping and exponentiation, which will produce noise textures with cloud-like

appearance and is described in detail in the section entitled “Post-Process of Noise

Textures”.

The texture mipmaps are set to be generated automatically with the

function call mTexture setUseHardwareMipMapGeneration(true). The minification and

magni-fication texture filtering is set to LINEAR_MIPMAP_LINEAR in order to obtain

the smoothest antialiasing possible. In addition, when associating the color and normal

arrays with the geometry, the binding mode for the array of colors is set to

BIND_PER_VERTEX and for the normals is set to BIND_OVERALL.

It is necessary to allow the sky to be seen through the cloud layers and this

is achieved by using a blending equation with source and destination factors

SRC_ALPHA and ONE_MINUS_SRC_ALPHA, respectively. Since the generated

texture has only the ALPHA channel available, the blending is automatic. The only

restriction that exists is that the layers should be added in a lower-to-upper order because,

otherwise, they will not be rendered correctly. This is a limitation of OpenGL

transparency management and it is not possible to circumvent it using only the fixed

graphics pipeline model.

The initial approach of assigning a single quad as a cloud layer was not

successful due to the problem of hard edges near the horizon. Dividing the quad in nine

segments and setting appropriate values for the vertices ALPHA values solved this

problem. The outer vertices have ALPHA equal to zero, while the four inner vertices
 17

have ALPHA equal to one. Later in the rasterization phase in the pipeline, the

intermediate pixels between the outer and inner edges will be assigned the interpolated

ALPHA value between zero and one. This ALPHA value combined with the ALPHA

value of the applied 2D noise texture will provide the final ALPHA value that will be

written in the color frame buffer. Figure 7 shows a representation of the discussed

method. The numbers indicate the segment divisions. Figure 8 demonstrates a

comparison between a regular four-vertex quad and one that uses the tessellated version.

It is apparent how the tessellated quad allows for smooth edges in the horizon.

Figure 7. Tessellated CloudPlane Quad

Figure 8. CloudPlanes with Hard Edges and Soft, ALPHA Enabled, Edges

The textures are applied on the quads with texture coordinates that are

modified at runtime to give the impression of wind because the clouds appear as though

they are moving. This is achieved with the mWind parameter (an osg::Vec2 instance),

 18

that modifies each layer texture coordinates relative to their height from the ground.

Every cloud layer has a user-defined height (mHeight) above the ground, which impacts

the effect that wind has on it. The closer to the ground the layer is, the greater its speed so

as to give the impression that what is seen in real life are low-height fast-moving clouds.

c. Update
Two methods were followed to change the various parameters of the cloud

layers. The first method implements the virtual function EnvEffect::Repaint(). This

function is required to be implemented by all classes that inherit from EnvEffect and is

called automatically by the Environment class every second. The following Environment

parameters are updated: sky_color, fog_color, sun_angle, sun_azimuth and visibility. By

using these values, it is straightforward to compute the updated cloud layer color

(mCloudColor), and along with the fog_color, to determine the final color of the inner out

outer vertices of the quad. Then, these colors are updated with the call

mPlane setColorArray(mColors).

The second method is to subscribe the CloudPlane class to receive

messages from the dtCore::System class with the AddSender(System::GetSystem()) call.

Any message that System sends will be received in the CloudPlane::OnMessage()

method1. In particular, the two messages of interest are “preframe” and “postframe”,

which contain the deltaFrameTime value that denotes the time that passed from one

frame of the simulation to the other.

Although the value deltaFrameTime was not needed in this class, the

second method was used for updating the texture coordinates of the quad because the

Repaint function of the first method is not called every frame and a “choppy” appearance

in the cloud layers appeared.

4. CloudDome Class

a. Overview
The CloudDome class is also registered with the Delta3D framework by

inheriting from the EnvEffect class. It renders clouds on a dome-shaped (hemispherical

structure) cloud surface around the 3D world by direct manipulation of a run-time or pre-

1 The mechanism that supports the messaging system relies on the Sig-Slot architecture.

 19

computed procedural volume texture in the GPU. Both pre-computed and run-time

volume noise textures are being generated by the NoiseGenerator class. The texture is

updated through vertex and fragment shaders written in the OpenGL Shading Language

at runtime with use of user-defined uniform variables either programmatically or with a

GUI applet.

b. Dome
The dome 3D object is constructed by a series of triangle strips with the

arrangement to have larger density where the alpha transition occurs in order to be

smoother. This is achieved by setting the angles from the bottom up to appropriate

values: the strip altitude increments are 0°, 4°, 5° and 5° with corresponding alpha values

for the vertices at that levels 0, 0.3, 0.7 and 1.0 (Figure 9). The actual colors of the dome

vertices are bright red, green and blue but normally they are not active in the simulation

because they are used only for debugging purposes when the shaders are inactive. The

number of levels used is seven while the number of segments is twenty.

Figure 9. Cloud Dome

The dome radius is variable and must be smaller than the radius of the

SkyDome that renders the rest of the sky. Again, the dome must be “fixed” above the

viewer and this is achieved by using the MoveEarthySkyWithEyePointTransform

transform node, which automatically translates the dome to the viewer point coordinates

and the color binding is set to BIND_PER_VERTEX

 20

c. Noise Texture

After creating the dome, a volume noise texture that will be applied onto it

must be created. There are two ways to acquire the texture: either by loading the texture

off the hard disk or generating it at runtime. If the supplied filename parameter is not

correct or the file cannot be found, the texture is again generated at runtime. The image

file format is DDS and has only pixel information in the ALPHA channel to keep the size

relatively small. If the volume texture has to be generated, the NoiseGenerator class is

instantiated and the parameters for the texture generation are: six octaves of noise, initial

frequency 6, initial amplitude 0.7 and persistence 0.5. A warning message is displayed in

the console to state that the supplied file name could not be loaded.

The default resolution of the volume texture is 1283, which is a reasonable

compromise between graphics memory requirements and visual appearance. Most new

graphics cards have a maximum volume texture resolution of 5123, but this would be

filling up valuable space on the graphics card memory and would take too much time to

be generated at runtime.

Currently, the DDS file format does not support volume texture mipmaps

and, therefore, the texture minification and magnification filtering for the 3D textures is

set to LINEAR. In addition, the utility OpenGL function that auto-generates mipmaps for

volume textures (gluBuild3DMipMapLevels), either was not implemented or fully

supported by all OpenGL drivers. It was, consequently, not used.

d. Shaders
Apart from the system graphics card capabilities, some ARB extensions

must be present in order for GLSL to be supported. These are

GL_ARB_fragment_shader, GL_ARB_vertex_shader, GL_ARB_shader_objects and

GL_ARB_shading_language100. GLSL is currently supported in OSG through its core

component osgGL2. In order to activate the shaders, which will render the clouds on the

dome, some steps must be followed. GLSL introduces vertex and fragment shader

objects, which contain the data structures necessary for storing the OpenGL shader.

Shader objects must attach to a program object, which is an OpenGL-managed data

structure and acts as a container for them. The shader source files must loaded into the

 21

vertex and fragment shader objects, compiled by the OpenGL driver and linked. Then,

the executable machine code is installed on the vertex and fragment processor where they

will be used to render all subsequent primitives (Figure 10).

There are two shader source files: vertex source file“cloud1.vert” and

fragment source “cloud1.frag”. The shader source code could have been embedded in the

CloudDome class, but having it as two separate shader files enables debugging and future

modification without recompiling the application source file.

Figure 10. Execution Model for OpenGL Shaders (From: OpenGL Shading Language
Book)

Communication between the application and either the vertex and

fragment processor is performed by passing uniform variables to the vertex and fragment

shaders. Uniform variables do not change across the primitive being processed and they

are used as a link between the shader, OpenGL and the application. User-defined uniform

variables are used by the application to pass arbitrary data values to the shaders, which

allows for shader parameterization and provides greater control to the end-user. The most
 22

important property of using uniform variables is that by modifying them at run-time,

either programmatically or through a graphical user interface, realizes a variety of effects

from only one shader. The cloud vertex and fragment shaders are using uniform variables

to control object scale, cloud color, texture offset, color bias and other parameters. With

this parameterized design, the end-user can easily visualize many different cloud textures

with run-time parameter modification.

The cloud vertex shader is simple enough to create as it has only four

functions to perform:

• Accepts the position of vertices in object space

• Scales the object according to a uniform variable Scale

• Transforms the position from object space to clip space and stores it to the
gl_position built-in varying variable

• Passes the user-defined varying variable ModelPosition to the fragment
shader

Figure 11. The Cloud Vertex Shader Source File

The Scale uniform parameter is used originally for optimally scaling the

object in relationship to the size of the noise texture, but also allows for finer control of

the size of clouds. The ModelPosition varying variable is used for making the scaled

 23

incoming vertex value available to the fragment shader. This would be the modeling

coordinate of the object at every fragment and it is used as the input for the 3D noise

texture lookup. The vertex transformation is achieved by using the built-in GLSL

function ftransform, which “ensures that the incoming vertex position is transformed in a

way that produces exactly the same result as would be produced if OpenGL’s fixed

functionality transform”. [1]

The cloud fragment shader is where the noise volume texture is used to

render clouds on the dome. It does the following:

• Accepts the user-defined varying variable ModelPosition from the vertex
shader

• Makes the 3D texture lookup for the alpha value using the scaled model
position as texture coordinates in addition to the Offset variable

• Performs the noise clamping and exponentiation using the Cutoff and
Exponent variables, which is discussed in more detail in the “Post-Process
Noise” section

• Biases the noise alpha value

• Computes the final fragment, color mixing the CloudColor color variable,
noise alpha and vertex alpha

 24

Figure 12. The Cloud Fragment Shader Source File

For each incoming fragment, the cloud fragment shader computes its color

by writing this value into the special output variable gl_FragColor. For determining the

final fragment color, the red, green and blue channel information of the CloudColor color

variable is taken and combined with the vertex alpha value, which has been transmitted

internally from the vertex shader and modulated by the already computed noise alpha

variable. The results of the fragment shader are then sent on for further processing.

 25

Figure 13. Fragment Color Computation

The remainder of the OpenGL pipeline remains the same. Fragments are

submitted to coverage application, pixel ownership testing, scissor testing, alpha testing,

stencil testing, depth testing, blending, dithering, logical operations, and masking before

ultimately being written into the frame buffer. The only operation used beyond the

fragment processor in this application (CloudDome::Create function) is blending. The

gl_FragColor final cloud color value must be blended with the sky. The source and

destination factors used are SRC_ALPHA and ONE_MINUS_SRC_ALPHA,

respectively.

To simulate procedural clouds that are forming, disappearing and drifting

across the sky, instead of using only the scaled dome position as the index (texture

coordinates) into the 3D noise texture, an offset value is added. This offset is defined as a

uniform variable (Offset) and can be updated by the application each frame. The clouds

can drift slowly by modifying the x component of this uniform variable while the cloud

forming is controlled with the y component. To achieve a more complex effect, both

coordinates can be modified each frame.

e. Update
All user-defined uniform variables are initialized in the application and

updated with the second method described in the CloudPlane class. CloudDome class

registers to receive messages from the dtCore::System class with the

CloudDome::OnMessage() method. By altering the values of Exponent and Cutoff

 26

variables, the user can control the clamping and exponentiation process in real-time.

Similar control is attainable with CloudColor, Bias and Offset uniform variables. All

these variables are defined as private data members in the class but they have their get()

and set() methods that allow access and modification.

C. SUPPLEMENTARY RESEARCH

1. Post-Process of Noise Textures
2D noise textures generated with NoiseGenerator must be clamped and

exponentiated. This parameterized process will produce noise textures with a cloud-like

appearance. The pixel depth of the texture is eight bits because it only has the alpha

channel available. Originally, these alpha values vary between 0 and 255 (or 0 to 1 in

OpenGL format), which are all possible values of a 1-byte data type. The user chooses

the cutoff and density values that will be used in the clamping and exponentiation

process.

The two functions can be combined in a two-leg function. If alpha is the original

alpha value of a pixel in the texture, it is modified as follows:

• If alpha < cutoff alpha = 0

• If alpha > cutoff alpha = 1 - densityalpha-cutoff

This modification has the effect of shrinking the dynamic range of the texture and

altering the transitions at the cloud edges. Figure 14 shows some sample curves

representing the output alpha values when processed with some typical values of density

and cutoff.

 27

Figure 14. Noise Clamping and Exponentiation Equation

The curve with density equal to 0.99 and cutoff equal to 0.3 will give the effect of

a near-filled sky with smoothed cloud edges and a very narrow dynamic range, while the

one with density equal to 0.95 and cutoff equal to 0.7 will generate a texture with sparse

clouds and hard edges.

 28

Figure 15. Exponentiation Effects on Noise Texture

It is obvious that with various combinations of these two parameters along with

the modification of the original parameters of the noise function (octaves, initial

frequency, initial amplitude and persistence), a nearly endless variety of cloud-like

textures can be produced. These textures were generated in volatile memory and they had

to be stored to some permanent storage media, such as a hard disk, using an appropriate

image file format. The problem faced was that not many image file formats are available

that support volume textures.

2. DDS File Format
The generated 2D and volume noise textures were stored as DDS (DirectDraw

Surface) files. This file format is created by Microsoft and is used to store 2D and volume

textures and cubic environment maps, both with and without mipmap levels. This format

can also store uncompressed and compressed pixel formats, and is the preferred file

format for storing DXT compressed data. This file format is supported by Microsoft with

the DirectX Texture tool (DXTex Tool) and also by NVIDIA, which has provided several

useful tools such as nvdext, a DDS import plugin for Photoshop and a DDS thumbnail

viewer for Windows 2000/XP.

 29

The internal format in which OSG stores images (osg::Image) is a thin

encapsulation of the OpenGL image data structure. The way OSG supports different

image file formats for importing and exporting images is via the Reader-Writer plugin

mechanism. Plugins allow users to write code to read arbitrary file types and convert

them into native formats. The plugin architecture also allows users to create a writer

mechanism that converts internal format images into arbitrary files types. As of May

2004, some formats were available for exporting 2D images (*.rgb, *.sgi, *.bmp, *.jpg

and *.pnm), but most had only Readers and none could export volume textures. This

limitation was important because it was not possible to store the NoiseGenerator volume

noise textures to hard disk, which led to the development of the missing necessary

support in OSG’s DDS plugin: volume image file import and export and 2D image file

export.

Figure 16 shows the DDS file layout. Its parts are:

• A value at the file header used to identify the file as the DDS format

• A “Surface Format Header” that contains all the information needed to
determine the contents of the entire file.

• A “Main Surface Data” area that contains the actual image data (pixel
values according to the pixel format: RGB, ALPHA, LUMINOSITY, etc.)

• An “Attached Surfaces Data” area that stores additional image data for
mipmaps or cubemaps

Figure 16. Structure of the DDS Image File Format

 30

The DDSURFACEDESC2 structure contained in the surface format header

describes the file contents using the standard flags and values defined in the Microsoft

DirectDraw documentation. For example, for a volume texture to be written to disk,

among other things, the following DDSURFACEDESC2 structure flags must be set:

• ddsd.dwFlags |= DDSD_DEPTH

• ddsCaps.dwCaps |= DDSCAPS_COMPLEX

• ddsCaps.dwCaps2 |= DDSCAPS2_VOLUME

The modifications to the DDS plugin were accepted and included in the OSG

open-source repository.

3. “Make Some Noise” Tool

One problem encountered was how to find the correct values that would create the

textures envisioned. Figure 17 shows the initial approach.

Figure 17. Noise Texture Creation Process

This highly iterative and time-consuming process had to be more efficient. A GUI

tool was created with Troll Tech’s Qt v.3.2.1(Non-commercial version) that helped to

streamline the process and freely tweak any parameter obtaining immediate visual results.

Also, the “Save” function to 2D or 3D DDS files was a method to store interesting

textures to the hard disk and use them in the CloudPlane and CloudDome classes.

A modified version of NoiseGenerator class was used with some additional

functionality:

• Option to generate textures as RAW image data instead of only
osg::Image textures

• Included exponentiation function

 31

These changes rendered the NoiseGenerator class OSG agnostic and suitable for a

broader range of applications. Additionally, the following features justified the choice of

Qt as the GUI builder instead of other toolkits:

• Excellent portability of the code in Linux and Macintosh platforms

• Complete help system

• Tight integration with Microsoft Visual Studio

• Specialized tools for rapid code development

Figures 18 and 19 show the tool ported to the Mac OSX (Panther) and Fedora

Core 2 Linux distribution, respectively.

Figure 18. “Make Some Noise” Tool Ported to Mac OSX

With this tool, the process of choosing the correct values for the noise parameters

was now straightforward. Ample textures, which represent various conditions of cloud

coverage, density, and texture, can be generated and stored for later use.

 32

Figure 19. “Make Some Noise” Tool Ported to Linux (Fedora)

4. Shader Development

The development of shaders in a high-level shading language such as GLSL or Cg

require many trials and iterations because these languages are still new and their features,

power and weaknesses are not yet fully understood. Additionally, programming the

graphics hardware requires precise knowledge of the way it replaces the fixed pipeline,

what actions are allowed at every stage and which underlying hardware will be targeted.

Moreover, during the development of shaders, there is no feedback where logic errors

exist and the debugging is very limited.

These difficulties can be addressed by using new tools created for shaders

development. One is ATI’s Shader IDE RenderMonkey in which the cloud vertex and

fragment shaders were created. When first introduced, it was available only for the HLSL

and Cg languages, but the 1.5 version supports GLSL as well. This application is freely

distributed and simplifies shader creation by providing an integrated environment for

editing and compiling shaders, loading textures, creating varying and uniform variables

and providing instant visual feedback. Also, it is an excellent tool for prototyping and
 33

debugging new graphics algorithms. In addition, it is possible to define multiple passes

for the fragment shaders if the underlying graphics hardware cannot support loops or

control structures in them.

Figure 20 is a screenshot of the RenderMonkey application. All windows can be

customized and positioned at will. Typically, on the left side, there is a tree structure of

the workspace where the user can define uniform variables, textures, render states,

camera objects and models to apply the shaders. In the “Artist Editor” window, there are

sliders by which the user can modify the uniform variables. In the Output window,

messages can be viewed from the compiling and linking process, along with other run-

time messages. The vertex and fragment shader source files can be edited with syntax-

highlighted formatting in the Shader Editor window. A Preview window is available to

monitor the effects that shaders have in the loaded 3d models.

Shader development time is reduced dramatically using this IDE as workspaces

can be templated, saved and reused. Using the GLSL shaders in the OpenGL application

is straightforward. The user simply needs to set the render states and define the textures

and uniform variables.

Other available non-commercial IDEs for shaders are NVIDIA’s FX Composer,

which support Cg and HLSL, and TyphoonLabs’ Shader Designer, which supports

GLSL.

 34

Figure 20. ATI’s RenderMonkey IDE

 35

THIS PAGE INTENTIONALLY LEFT BLANK

 36

IV. CLOUD SIMULATION IMPLEMENTATION

A. DELTA3D INTEGRATIONS
The NoiseGenerator, CloudPlane and CloudDome classes have been integrated in

the Delta3D simulation engine and can be used by any application needs more realism in

outdoor scenes. A simple test application has been created to exhibit the capabilities of

these classes and serve as one of the demonstrations for the MOVES Open House 2004.

Performance measurements have been conducted with the Fraps benchmark tool to

evaluate the performance penalty that cloud rendering imposes on the test application.

1. CloudPlane
Creating layers of clouds inside a simulation with the CloudPlane class is very

simple. One or more layers can be rendered with the constraint that the order of the layers

is from the furthest to the closest due to OpenGL transparency and blend function

management. The declaration of a layer is as follows:

dtCore::CloudPlane *cloudPlane;

or if OSG referenced pointers is used

osg::ref_ptr<dtCore::CloudPlane> cloudPlane;

Each layer must be instantiated passing parameters to the constructor that defines

the characteristics of the cloud plane: noise parameters (octaves, cutoff, frequency,

amplitude, persistence, density and texture size), height from the ground and optionally

name.

cloudPlane = new dtCore::CloudPlane(octaves, cutoff, frequency,
amplitude, persistence, density, texSize, height, “Low layer”);

Then each cloud layer must be added to the Environment, as all EnvEffects are

required in order to be populated in a list and rendered correctly. A handle to a Weather

instance is necessary since the Environment instance is, by aggregation, included in

Weather:

 37
weather->GetEnvironment()->AddEffect(cloudPlane);

Multiple layers can be added to the Environment with the same procedure, which

in turn must be added as a Drawable to the main dtABC::Application:

application->AddDrawable(weather->GetEnvironment());

In the sample test application testClouds, an array of three elements was

initialized with the following three cloud layers of different characteristics:

osg::ref_ptr<dtCore::CloudPlane> cloudPlane[3];
// Overcast sky with clouds
cloudPlane[0]=new dtCore::CloudPlane(10, .6, 3, .5, .7, .95, 1024, 1400);
// Broken clouds
cloudPlane[1]=new dtCore::CloudPlane(10, .7, 6, 1, .4, .96, 1024, 1200);
// Few Clouds
cloudPlane[2]=new dtCore::CloudPlane(8, .8, 16, .8, .4, .96, 1024, 900);

These are added from the furthest (1400 units) to the closest (900 units) with

decreasing cloud covering area (Cutoff increasing from 0.6 to 0.8) and increasing

frequency to render small clouds at the bottom layer. The textures of the layers could be

any power of 2 resolution depending on the application. A typical resolution is 512x512

pixels, while 1024x1024 could be used for smoother textures and 256x256 when there are

memory constraints. These three 1024x1024 layers require 3 Mb of graphics memory,

which is within limits of most graphics cards. If all four channels (RGBA) had been used

for the textures, the required memory would have been 12 Mb, so the choice of using

only an alpha channel texture saves 8 Mb of memory in this particular occasion.

Generally, the memory requirements for only alpha channel textures are ¼ of the regular

RGBA textures.

The translation of the texture coordinates of the quads relative to their height from

the x-y plane, along with the addition of a terrain model, augments depth perception of

the scene. The terrain is constructed by means of the dtCore::InfiniteTerrain class, and

this scene was the “test bed” on which the cloud classes were tested. The following

screenshots in Figures 21, 22 and 23 represent each CloudPlane layer, with the

parameters mentioned earlier: “Overcast sky”, “Broken clouds”, “Few Clouds”. Layers

can be combined and rendered one on top of the other as shown in Figure 24 where layers

2 and 3 have been combined.

 38

Figure 21. Overcast Sky

Figure 22. Broken Clouds

 39

Figure 23. Few Clouds

Figure 24. Combined 2nd and 3rd Layers

 40

The cloud layers are shaded according to the time of day and appear different

shades according to their height from the x-y plane. Due to the loose tessellation of the

cloud quads, the color is uniform across the inner vertices. This feature, in addition to the

built-in color model of the sky, adds realism and visual appeal to the simulation. If fog

has been added to the scene, setting the respective OpenGL fog state fogs the cloud layers

as well individually. Figure 25 shows a scene at dusk:

Figure 25. Clouds with CloudPlanes at Dusk

2. CloudDome

In order for a system to use OpenGL shaders, it must fulfill two prerequisites: a

capable graphics card and OpenGL drivers that support GLSL. The declaration of the

second cloud rendering class, CloudDome, is no different from the CloudPlane:

dtCore::CloudDome *cloudDome;
or if OSG referenced pointer is used
osg::ref_ptr<dtCore::CloudDome> cloudDome;

 41

There are two ways to define the 3D noise texture used by the CloudDome class:

either by directly loading a pre-computed 3D noise texture or by computing one at

runtime. The same noise parameters (octaves, cutoff, frequency, amplitude, persistence

and density) as in the CloudPlane class are required, except from the texture size, which

is fixed to 128x128x128. Additionally, two extra parameters should be provided: one that

represents the radius of the dome and one for the segments of the circumference of the

dome. Consequently, there are two constructors that can handle these two cases.

cloudDome = new dtCore::CloudDome(octaves, cutoff, frequency,
amplitude, persistence, density, radius, segments);

The second constructor only requires these two parameters and the DDS filename

of the pre computed 3D noise texture:

cloudDome = new dtCore::CloudDome(radius, segments, <filename>);

These two constructors can be used interchangeably but only one is allowed in

any application. The second form is faster in loading time but it requires a texture. An

example of a CloudDome instantiation can be found in the “Cloud Simulation” demo in

which the 3D texture is computed on the fly. The following constructor has been used:

cloudDome = new dtCore::CloudDome(6, 2, .7, .5, .7, 5, 5500, 20);

The CloudDome instance must be added to the Environment in order to be

included in the EnvEffect list and rendered correctly.

weather->GetEnvironment()->AddEffect(cloudDome.get());

Again, the Environment must be added as a Drawable to the main

dtABC::Application:

application->AddDrawable(weather->GetEnvironment());

The values of all the uniform variables of the shaders can be conveniently

modified after an CloudDome object is constructed by using their respective setter

 42

functions: setScale(), setExponent(), setCutoff(), setSpeedX(), setSpeedY(), setBias(),

setCloudColor(). Changing these variables has the effect of real-time alteration of the

cloud appearance. Furthermore, combining values into themes can be helpful for storing

certain cloud appearances for later use.

For the needs of the “Cloud Simulation”, the FLTK applet, which was described

in a previous section, was used to modify these values by user-interaction and non-

programmatically.

Figure 26. CloudDome Screenshot 1

 43

Figure 27. CloudDome Screenshot 2

Figure 28. CloudDome Screenshot 3

 44

3. FLTK GUI

The CloudDome shaders can be previewed with the use of a GUI applet in which

the user has access to all parameters (uniform variables) of the shaders. This applet is

created with a FLTK User Interface Designer (fluid), which Delta3D had already been

using as a GUI for testing other types of classes. The Offset variable is replaced by X

speed and Y speed variables, which denote the horizontal and vertical cloud speed. The

user is given the capability to change every aspect of the clouds appearance effortlessly

and instantly observe the results. Also, the applet provides the option to disable the

shaders completely and enable back the OpenGL fixed functionality for debugging,

performance benchmarking or other reasons.

Figure 29. FLTK GUI Applet for CloudDome

For example, the screenshots in Figures 29 and 30 are from the same static scene

and show the “forming” of clouds by simply altering the uniform parameter Cutoff via the

FLTK GUI.

 45

Figure 30. Cutoff Equal to 0.85 and 0.78

Figure 31. Cutoff Equal to 0.72 and 0.61

4. Performance

In order to evaluate the performance of CloudPlane and CloudDome classes, the

frames per second of the “Cloud Simulation” have been measured before and after the

use of any cloud rendering method. All the measurements have been conducted on a

system with the following characteristics:

• Processor: Intel Pentium 4 HT, 2.933 Mhz

• Motherboard: MSI 865PE, 1Gb RAM

• Video Adapter: ATI All-in-Wonder 9600 (128 Mb), Catalyst drivers v. 4.7

• Display Mode: 1280x1024 with 32 bits per pixel, Refresh rate: 100Hz

• Operating System: Microsoft Windows XP with SP1

 46

The tool used for the measurements was Fraps v.2.0. The Vsync property was

disabled in order to avoid artificial capping of the FPS due to the graphics card and

monitor synchronization. This decision was taken because Delta3D itself does not have

an internal limit that would have prevent applications from rendering faster than a certain

frame rate. In other words, the maximum frame rate that the application can obtain will

not be limited by the refresh rate of the monitor. During the measurements, all

unnecessary processes and applications were shutdown and the simulation executed in

full screen. Finally, the Windows XP internal limit for OpenGL applications (60 FPS)

was disabled.

The results, which are presented in Table 1, show that overall, there is a drop in

the frame rate as expected, but this drop is not always significant. Specifically, the frame

rate when one CloudPlane was activated had a drop of 15%. The maximum frame drop

occurred when CloudDome was activated where a drop of 47% made the actual FPS

equal to 44. Even then, it was still greater than the minimum 30 FPS required for correct

animation perception.

These findings prove that that the addition of cloud rendering techniques has

some adverse performance effects on the application, however, these natural effects can

be rendered at real-time in mainstream graphics cards.

Sky State Frames Per Second Drop (%)

Empty sky 83 -

One CloudPlane 70 15

Two CloudPlanes 62 25

Three CloudPlanes 59 29

CloudDome 44 47

Table 1. Application FPS Changes with the Addition of Clouds

B. LINUX PORT

At the time of this writing, the Delta3D simulation engine had been developed

only for Microsoft Windows platforms, but the goal is to be available for other platforms

as well. As far as the Linux platform is concerned, plenty of non-commercial Linux

distributions are suitable for developing any kind of large-scale applications including

virtual environment simulations. Both major graphics cards vendors (ATI & NVIDIA)

 47

are maintaining up-to-date Linux OpenGL drivers along with support for OpenGL

shaders. In addition, the main underlying framework on which Delta3D is based, OSG,

can be natively built on Linux machines.

Most Delta3D simulation engine components have been ported to Fedora Core 2

Linux distribution as the final portion of this thesis. In order for the “Cloud Simulation”

to be able to execute correctly in this platform, some modifications in the source code

were necessary. The most important modifications were:

• Several class name conflicts had to be resolved

• Strict filename and code case (uppercase and lowercase letters) had to be
enforced

• Some alternate standard C++ library function definitions had been
provided

• Recompilation of all of the dependencies of Delta3D under Linux (FLTK,
pLib, InterSense, tinyXML, ReplicantBody, Cal3D, ODE and
OpenThreads, Producer and OpenSceneGraph)

The resulting code had similar or better performance compared to that of the

Windows platforms. The actual MOVES Open House “Cloud Simulation” application

was demonstrated on a Linux machine.

 48

V. CONCLUSIONS – FUTURE WORK

A. SUMMARY
This thesis designed and implemented a simulation component that renders clouds

using procedural noise-based texturing techniques. Two modeling approaches were used.

In the first method, procedural textures representing cloud layers were mapped onto

elevated quads that were properly tessellated. The second method employed OpenGL

Shading Language to update the position and other characteristics of a 3D procedural

texture mapped onto a dome dynamically. Both methods create convincing clouds when

used in interactive outdoor simulations while the performance penalty imposed is

considered acceptable.

The 2D and 3D noise textures used in both methods were created having a

seamless tiling property so that their edges would not be noticeable. Additionally, 3D

texture read/write support was built for the DDS file format plugin of OpenSceneGraph

in order to store the textures for later use. A custom GUI tool, “Make Some Noise”, has

also been built to help with the efficient creation and storing of 2D and 3D textures

through parameterization.

In addition, cross-platform compatibility was demonstrated by porting the Cloud

Simulation to Fedora Linux. Lastly, the cloud simulation component was included in the

Delta3D simulation engine and was used in demonstrations during MOVES 2004 Open

House.

B. FUTURE WORK
Future work should focus on expanding the capabilities of the current cloud

simulation component concerning the visual detail and quality and volumetric support but

also on developing support for the simulation of other natural phenomena such as rain,

haze, snow, and lighting.

1. Clouds
The visual detail of cloud simulation could be improved by developing a more

sophisticated shader algorithm that could not only modify texture coordinates and texture

exponentiation, but also create turbulent flows and swirls in the clouds. In addition, one

 49

restriction of the current cloud simulation component is that it limits the viewpoint

around the ground level. This limitation could be removed if the volumetric cloud

modeling approach was followed. This approach is recommended for simulations that

demand flight in and around clouds.

Presently, the shading of clouds allow only for one color due to the nature of the

texture mapping technique used. A new shading model could be developed for greater

realism of the cloud simulation during dawn and dusk hours that could give clouds self-

shadows and color variation.

2. Other Natural Phenomena
The inclusion of models of various other natural phenomena such as rain, snow,

and haze in outdoor simulations greatly enhances realism and fidelity. Especially in

training applications, the representation of various weather conditions is often necessary.

A library of such phenomena could be built in the Delta3D simulation engine using

shaders or traditional rendering techniques. For example, rain could be modeled as

antialiased, blurred lines rendered on a screen-aligned rectangle. The lines could be

slanted according to the viewpoint speed.

The possibilities are endless with the number of effects that could be modeled and

included in the simulation engine. When the graphics hardware matures further, it should

be possible to generate these natural phenomena on-demand at runtime without a

significant drop in performance.

 50

APPENDIX GLOSSARY

2D Two dimensional

3D Three dimensional

Mipmap Texture maps of decreasing resolutions used to

antialise texture map primitives

Vertex A point in three-dimensional space

Fragment The set of data that is generated by rasterization and

represents the information necessary to update a

single frame buffer location

Shader Source code written in a shading language that is

intended to executed in the vertex and fragment

processors

FPS Frames per Second

GUI Graphical User Interface

 51

THIS PAGE INTENTIONALLY LEFT BLANK

 52

BIBLIOGRAPHY

All brands and names are trademarks of their respective companies.

[1] Randi J.Rost (2004). OpenGL Shading Language. Addison Wesley © 2004 ISBN
0-321-19789-5.

[2] David S. Ebert et al., (2002). Texture & Modeling – A Procedural Approach (3rd
Ed). Morgan Kaufman © 2002 ISBN1-55860-848-6.

[3] Ken Perlin (2002). Improving Noise. SIGGRAPH 2002 Paper.

[4] David S. Ebert et al., (2003). A Real-Time Cloud Modeling, Rendering and
Animation System. Eurographics/SIGGRAPH Symposium on Computer
Animation (2003).

[5] Yoshinori Dobashi et al., (2000). A Simple, Efficient Method for Realistic
Animation of Clouds. SIGGRAPH 2000 Paper.

[6] Tomas Akenine-Möller and Eric Haines (2002). Real-Time Rendering (2nd Ed).
A K Peters © 2002 ISBN 9-781568-811826.

[7] Randima Fernardo and Mark J. Kilgard (2003). The Cg Tutorial. Addison Wesley
© 2003 ISBN 0-321-19496-9.

[7] Matt Welsh et al., (2002). Running Linux (4th Ed). O’Reilly © 2002 ISBN 0-596-
00272-6.

[8] John A. Day (2003). The Book of Clouds. Barnes and Noble © 2003
ISBN 0-7607-3536-0.

[9] Randima Fernardo et al., (2004). GPU Gems. Addison Wesley © 2004 ISBN
0-321-22832-4.

[10] Mark J. Harris. Real-Time Cloud Simulation and Rendering. University of North
Carolina Technical Report #TR03-040. 2003.

 53

THIS PAGE INTENTIONALLY LEFT BLANK

 54

 55

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School
Monterey, California

3. Professor Rudy Darken

MOVES Institute of Naval Postgraduate School
Monterey, California

4. CDR Joseph Sullivan

MOVES Institute of Naval Postgraduate School
Monterey, California

5. Erik Johnson

MOVES Institute of Naval Postgraduate School
Monterey, California

6. LT Georgios Tarantilis

65 Ag Spiridonos, Egaleo, 12243
Athens, Greece

	I.INTRODUCTION
	A.PROBLEM STATEMENT
	B.RESEARCH QUESTIONS

	II.BACKGROUND
	A.GRAPHICS HARDWARE
	1.Evolution
	2.Programmable Hardware
	3.Future Trends

	B.HIGH-LEVEL SHADING LANGUAGES
	C.PROCEDURAL TEXTURING
	1.Introduction
	2.Noise
	3.Solid Noise Textures
	4.Natural Phenomena

	D.SCENE GRAPHS
	1.Introduction
	2.OpenSceneGraph

	III.CLOUD SIMULATION DESIGN
	A.INTRODUCTION
	1.Purpose
	2.Overview
	3.Tools

	B.DESIGN DESCRIPTION
	1.Overview
	2.NoiseGenerator Class
	3.CloudPlane Class
	a.Overview
	b.Noise Texture
	c.Update

	4.CloudDome Class
	a.Overview
	b.Dome
	c.Noise Texture
	d.Shaders
	e.Update

	C.SUPPLEMENTARY RESEARCH
	1.Post-Process of Noise Textures
	2.DDS File Format
	3.“Make Some Noise” Tool
	4.Shader Development

	IV.CLOUD SIMULATION IMPLEMENTATION
	A.DELTA3D INTEGRATIONS
	1.CloudPlane
	2.CloudDome
	3.FLTK GUI
	4.Performance

	B.LINUX PORT

	V.CONCLUSIONS – FUTURE WORK
	A.SUMMARY
	B.FUTURE WORK
	1.Clouds
	2.Other Natural Phenomena

	APPENDIX GLOSSARY
	BIBLIOGRAPHY
	INITIAL DISTRIBUTION LIST

